AIRS CO₂ data assimilation with Ensemble Kalman filter: preliminary results Junjie Liu¹ Eugenia Kalnay² and Inez Fung¹ ¹UC Berkeley; ²University of Maryland Many thanks to Edward Olsen and Moustafa Chahine for kindly providing us their AIRS L2 CO₂ retrievals and guidance! Other collaborators include Yu-Heng Tseng, Michael Wehner and Masao Kanamitsu. # AIRS CO₂ data assimilation with Ensemble Kalman filter: preliminary results Junjie Liu¹ Inez Fung¹ and Eugenia Kalnay² ¹UC Berkeley; ²University of Maryland Many thanks to Edward Olsen and Moustafa Chahine for kindly providing us their AIRS L2 CO₂ retrievals and guidance! Other collaborators include Yu-Heng Tseng, Michael Wehner and Masao Kanamitsu. # Motivation & Goals #### Motivation: Accurate carbon flux estimation from inversion needs far more CO₂ observations than current surface obs can provide. #### Goals: - 1. Generate global CO₂ map every 6-hour; start with AIRS, then GoSat - Propagate AIRS CO₂ in both horizontal and vertical direction through data assimilation and transport model #### **AIRS CO2 at 18Z01May2003 (+/-3hour)** #### Outline - CO₂ simulation in Community Atmospheric Model 3.5 (CAM 3.5) - Methods to assimilate AIRS CO₂ with Ensemble Kalman Filter (EnKF) - Preliminary results - Summary and future plans ### CO₂ simulation in CAM3.5 - Community Atmospheric Model 3.5 (CAM 3.5) coupled with Community Land Model 3.5 (CLM 3.5) - Finite Volume dynamical core - 2.5°x1.9° horizontal resolution, with 26 vertical levels up to 3.5hPa. - CO₂ is transported as a tracer in CAM 3.5 - Carbon flux forcing - Fossil fuel emission (yearly average value in 2003) - Ocean C flux (changes with month; Takahashi et al., 2002) - Land C flux (changes with month; CASA annually balanced flux from Transcom 3) - Four-year model integration started from 01Jan 2000 ## Comparison between model simulation and observations - Seasonal cycle simulation is pretty good even though the flux is not perfect. - N-S model gradient is smaller than observations, similar to Engelen at al. 2008. #### Ensemble Kalman Filter ✓ Analysis mean $\overline{\mathbf{x}}^a = \overline{\mathbf{x}}^b + \mathbf{K}(\mathbf{y}^o - h(\overline{\mathbf{x}}^b))$, **K** is function of background error and observation error. $h(\cdot)$ is the observation operator, which interpolates model forecast to observation space (more details later); #### CO₂ observation operator - Model forecast x^b is CO₂ vertical profile; - AIRS CO₂ is weighted column Volume Mixing Ratio (vmr); - => observation operator: interpolate x^b to obs location & calculate model forecast weighted column CO₂ vmr based on CO₂ profile. $$\mathbf{y}^b = h(\mathbf{x}^b) = \mathbf{A}^T(\mathbf{H}\mathbf{x}^b) = \sum_{i=1}^k a_i(Hx_i^b)$$ \mathbf{x}^b : model forecast CO_2 vertical profile; k: the total vertical levels; H: spatial interpolation operator; y^b: model predicted CO₂ column mixing ratio. A: averaging kernel; a_i is the element at ith vertical level; #### **Averaging Kernel** Averaging kernel for 370ppm (black: 90°; red: 45°; green: 0°) Averaging kernel for 390ppm (black: 90°; red: 45°; green: 0°) Interpolate averaging kernels based on CO_{2(base)} $CO_{2(base)}$ (time=t)=371.92429+1.840618*(t-t0), where t0=00ZJan1, 2002; - 2. Linearly Interpolate among latitudes; - 3. Normalize the interpolated averaging kernels, i.e., sum(A)=1.0 ### CO₂ assimilation method - AIRS CO₂ observation is a column weighted value; - Model forecast CO₂ state x^b and analysis state x^a are vertical profiles; - => How to localize CO₂ column observation to obtain CO₂ vertical profile? $\Delta y_i^{o'} = a_i \times (\mathbf{y}^o - h(\overline{\mathbf{x}}^b));$ localize the column observation increment to i^{th} vertical level by the ith averaging kernel element a_i $\Delta y_{j,i}^{b'} = a_i \times h(\mathbf{x}_j^b)$; localize the jth ensemble forecast column CO₂ to the i^{th} vertical level by the ith averaging kernel element a_i #### AIRS CO₂ observations #### 00Z02May, 2003 +-3hour - Some outliers in the AIRS CO2 observations (may not mean bad quality). - Need some quality control before assimilating these obs. # Quality control of AIRS CO2 observations 00Z02May, 2003 +-3hour **Buddy check:** compare each observation to the mean of the observations within 400km. **Bad observations**: absolute difference larger than 5ppm; filter out about 8%. ### Single CO₂ analysis step - Analysis increment= analysis-background forecast - Spatial pattern of analysis increment follows the observation coverage. - Propagate observation information horizontally. #### CO₂ analysis increment vertical profile The magnitude of analysis increments in vertical direction follows the shape of averaging kernel. #### Experimental design - No constraints on CO₂ in meteorological run; - AIRS CO₂ constrains CO₂ vertical profile in CO₂ run. # CO₂ difference between CO₂ run and meteorological run - 1. Adjustment by AIRS CO₂ spans from 800hPa to 100hPa - 2. The adjustment is larger in the NH ### Fitting to AIRS CO₂ obs Green: meteorological run; Red: 6-hour forecast from CO₂ run; black: analysis from CO₂ run Fitting to the AIRS CO₂ observations has been much improved in CO₂ run. #### Summary - CO₂ seasonal cycle is well simulated by CAM3.5, but N-S gradient is weaker; - Proposed a procedure to assimilate AIRS CO₂ retrievals with ensemble Kalman filter; - Assimilation and transport model propagate the AIRS CO₂ observation in both horizontal and vertical directions. - As expected, CO₂ column mixing ratio from CO₂ run is closer to AIRS CO₂ retrievals than that from meteorological run. ### Future plans - Extend the length of assimilation and use more accurate averaging kernel. - Compare the results to in-situ CO₂ observations, e.g., aircraft data. - Develop more sophisticated QC. - Explore multivariate CO₂ data assimilation. - Use carbon flux predicted by the online CASA model. - Based on the simulated experiments of Ji-Sun Kang (UMD), ultimately, estimate carbon flux based on AIRS CO₂ data and GOSAT CO₂ data